Fast Suboptimal Algorithms for the Computation of Graph Edit Distance

نویسندگان

  • Michel Neuhaus
  • Kaspar Riesen
  • Horst Bunke
چکیده

Graph edit distance is one of the most flexible mechanisms for error-tolerant graph matching. Its key advantage is that edit distance is applicable to unconstrained attributed graphs and can be tailored to a wide variety of applications by means of specific edit cost functions. Its computational complexity, however, is exponential in the number of vertices, which means that edit distance is feasible for small graphs only. In this paper, we propose two simple, but effective modifications of a standard edit distance algorithm that allow us to suboptimally compute edit distance in a faster way. In experiments on real data, we demonstrate the resulting speedup and show that classification accuracy is mostly not affected. The suboptimality of our methods mainly results in larger inter-class distances, while intra-class distances remain low, which makes the proposed methods very well applicable to distance-based graph classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic

Graph edit distance is a dissimilarity measure for arbitrarily structured and arbitrarily labeled graphs. In contrast with other approaches, it does not suffer from any restrictions and can be applied to any type of graph, including hypergraphs [1]. Graph edit distance can be used to address various graph classification problems with different methods, for instance, k-nearest-neighbor classifie...

متن کامل

Approximate graph edit distance computation by means of bipartite graph matching

In recent years, the use of graph based object representation has gained popularity. Simultaneously, graph edit distance emerged as a powerful and flexible graph matching paradigm that can be used to address different tasks in pattern recognition, machine learning, and data mining. The key advantages of graph edit distance are its high degree of flexibility, which makes it applicable to any typ...

متن کامل

Approximate Graph Edit Distance Computation Combining Bipartite Matching and Exact Neighborhood Substructure Distance

Graph edit distance corresponds to a flexible graph dissimilarity measure. Unfortunately, its computation requires an exponential complexity according to the number of nodes of both graphs being compared. Some heuristics based on bipartite assignment algorithms have been proposed in order to approximate the graph edit distance. However, these heuristics lack of accuracy since they are based eit...

متن کامل

Approximate Graph Edit Distance Guided by Bipartite Matching of Bags of Walks

The definition of efficient similarity or dissimilarity measures between graphs is a key problem in structural pattern recognition. This problem is nicely addressed by the graph edit distance, which constitutes one of the most flexible graph dissimilarity measure in this field. Unfortunately, the computation of an exact graph edit distance is known to be exponential in the number of nodes. In t...

متن کامل

Comparing Stars: On Approximating Graph Edit Distance

Graph data have become ubiquitous and manipulating them based on similarity is essential for many applications. Graph edit distance is one of the most widely accepted measures to determine similarities between graphs and has extensive applications in the fields of pattern recognition, computer vision etc. Unfortunately, the problem of graph edit distance computation is NP-Hard in general. Accor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006